微信公众号
免费顾问咨询
Reading Part
The Navajo, a Native American people living in the southwestern United States, live in small scattered settlements. In many respects, such as education, occupation, and leisure activities, their life is like that of other groups that contribute to the diverse social fabric of North American culture in the twenty-first century. At the same time, they have retained some traditional cultural practices that are associated with particular art forms. For example, the most important traditional Navajo rituals include the production of large floor paintings. These are actually made by pouring thin, finely controlled streams of colored sands or pulverized vegetable and mineral substances, pollen, and flowers in precise patterns on the ground. The largest of these paintings may be up to 5.5 meters in diameter and cover the entire floor of a room. Working from the inside of the design outward, the Navajo artist and his assistants will sift the black, white, bluish-gray, orange, and red materials through their fingers to create the finely detailed imagery. The paintings and chants used in the ceremonies are directed by well-trained artists and singers who enlist the aid of spirits who are impersonated by masked performers. The twenty-four known Navajo chants can be represented by up to 500 sand paintings. These complex paintings serve as memory aids to guide the singers during the performance of the ritual songs, which can last up to nine days.
The purpose and meaning of the sand paintings can be explained by examining one of the most basic ideals of Navajo society, embodied in their word hozho (beauty or harmony, goodness, and happiness). It coexists with hochxo ("ugliness," or "evil," and "disorder") in a world where opposing forces of dynamism and stability create constant change. When the world, which was created in beauty, becomes ugly and disorderly, the Navajo gather to perform rituals with songs and make sand paintings to restore beauty and harmony to the world. Some illness is itself regarded as a type of disharmony. Thus, the restoration of harmony through a ceremony can be part of a curing process.
Men make sand paintings that are accurate copies of paintings from the past. The songs sung over the paintings are also faithful renditions of songs from the past. By recreating these arts, which reflect the original beauty of creation, the Navajo bring beauty to the present world. As relative newcomers to the Southwest, a place where their climate, neighbors, and rulers could be equally inhospitable, the Navajo created these art forms to affect the world around them, not just through the recounting of the actions symbolized, but through the beauty and harmony of the artworks themselves. The paintings generally illustrate ideas and events from the life of a mythical hero, who, after being healed by the gods, gave gifts of songs and paintings. Working from memory, the artists re-create the traditional form of the image as accurately as possible.
The Navajo are also world-famous for the designs on their woven blankets. Navajo women own the family flocks, control the shearing of the sheep, the carding, the spinning, and dying of the thread, and the weaving of the fabrics. While the men who make faithful copies of sand paintings from the past represent the principle of stability in Navajo thought, women embody dynamism and create new designs for every weaving they make. Weaving is a paradigm of the creativity of a mythic ancestor named Spider Woman who wove the universe as a cosmic web that united earth and sky. It was she who,according to legend, taught Navajo women how to weave. As they prepare their materials and weave. Navajo women imitate the transformations that originally created the world. Working on their looms, Navajo weavers create images through which they experience harmony with nature. It is their means of creating beauty and thereby contributing to the beauty, harmony,and healing of the world. Thus, weaving is a way of seeing the world and being part of it.
The Navajo, a Native American people living in the southwestern United States, live in small
scattered settlements. In many respects, such as education, occupation, and leisure
activities, their life is like that of other groups that contribute to the diverse social
fabric of North American culture in the twenty-first century. At the same time, they have
retained some traditional cultural practices that are associated with particular art forms.
For example, the most important traditional Navajo rituals include the production of large
floor paintings. These are actually made by pouring thin, finely controlled streams of
colored sands or pulverized vegetable and mineral substances, pollen, and flowers in
The purpose and meaning of the sand paintings can be explained by examining one of the most basic ideals of Navajo society, embodied in their word hozho (beauty or harmony, goodness, and happiness). It coexists with hochxo ("ugliness," or "evil," and "disorder") in a world where opposing forces of dynamism and stability create constant change. When the world, which was created in beauty, becomes ugly and disorderly, the Navajo gather to perform rituals with songs and make sand paintings to restore beauty and harmony to the world. Some illness is itself regarded as a type of disharmony. Thus, the restoration of harmony through a ceremony can be part of a curing process.
Men make sand paintings that are accurate copies of paintings from the past. The songs sung over the paintings are also faithful renditions of songs from the past. By recreating these arts, which reflect the original beauty of creation, the Navajo bring beauty to the present world. As relative newcomers to the Southwest, a place where their climate, neighbors, and rulers could be equally inhospitable, the Navajo created these art forms to affect the world around them, not just through the recounting of the actions symbolized, but through the beauty and harmony of the artworks themselves. The paintings generally illustrate ideas and events from the life of a mythical hero, who, after being healed by the gods, gave gifts of songs and paintings. Working from memory, the artists re-create the traditional form of the image as accurately as possible.
The Navajo are also world-famous for the designs on their woven blankets. Navajo women own the family flocks, control the shearing of the sheep, the carding, the spinning, and dying of the thread, and the weaving of the fabrics. While the men who make faithful copies of sand paintings from the past represent the principle of stability in Navajo thought, women embody dynamism and create new designs for every weaving they make. Weaving is a paradigm of the creativity of a mythic ancestor named Spider Woman who wove the universe as a cosmic web that united earth and sky. It was she who,according to legend, taught Navajo women how to weave. As they prepare their materials and weave. Navajo women imitate the transformations that originally created the world. Working on their looms, Navajo weavers create images through which they experience harmony with nature. It is their means of creating beauty and thereby contributing to the beauty, harmony, and healing of the world. Thus, weaving is a way of seeing the world and being part of it.
Since this purpose is limited to the context of the ritual, the paintings are destroyed when the ritual is completed.
The Navajo, a Native American people living in the southwestern United States, live in small scattered settlements. In many respects, such as education, occupation, and leisure activities, their life is like that of other groups that contribute to the diverse social fabric of North American culture in the twenty-first century. At the same time, they have retained some traditional cultural practices that are associated with particular art forms. For example, the most important traditional Navajo rituals include the production of large floor paintings. These are actually made by pouring thin, finely controlled streams of colored sands or pulverized vegetable and mineral substances, pollen, and flowers in precise patterns on the ground. The largest of these paintings may be up to 5.5 meters in diameter and cover the entire floor of a room. Working from the inside of the design outward, the Navajo artist and his assistants will sift the black, white, bluish-gray, orange, and red materials through their fingers to create the finely detailed imagery.[ 1 ] The paintings and chants used in the ceremonies are directed by well-trained artists and singers who enlist the aid of spirits who are impersonated by masked performers. [ 2 ] The twenty-four known Navajo chants can be represented by up to 500 sand paintings. [ 3 ] These complex paintings serve as memory aids to guide the singers during the performance of the ritual songs, which can last up to nine days.[ 4 ]
Navajo art is fundamentally connected to aspects of Navajo ritual and belief.
Answer Choices
Earth has abundant water in its oceans but very little carbon dioxide in its relatively thin atmosphere. By contrast, Venus is very dry and its thick atmosphere is mostly carbon dioxide. The original atmospheres of both Venus and Earth were derived at least in part from gases spewed forth, or outgassed, by volcanoes. The gases that emanate from present-day volcanoes on Earth, such as Mount Saint Helens, are predominantly water vapor, carbon dioxide, and sulfur dioxide. These gases should therefore have been important parts of the original atmospheres of both Venus and Earth. Much of the water on both planets is also thought to have come from impacts from comets, icy bodies formed in the outer solar system.
In fact, water probably once dominated the Venusian atmosphere. Venus and Earth are similar in size and mass, so Venusian volcanoes may well have outgassed as much water vapor as on Earth, and both planets would have had about the same number of comets strike their surfaces. Studies of how stars evolve suggest that the early Sun was only about 70 percent as luminous as it is now, so the temperature in Venus’ early atmosphere must have been quite a bit lower. Thus water vapor would have been able to liquefy and form oceans on Venus. But if water vapor and carbon dioxide were once so common in the atmospheres of both Earth and Venus, what became of Earth’s carbon dioxide? And what happened to the water on Venus?
The answer to the first question is that carbon dioxide is still found in abundance on Earth, but now, instead of being in the form of atmospheric carbon dioxide, it is either dissolved in the oceans or chemically bound into carbonate rocks, such as the limestone and marble that formed in the oceans. If Earth became as hot as Venus, much of its carbon dioxide would be boiled out of the oceans and baked out of the crust. Our planet would soon develop a thick, oppressive carbon dioxide atmosphere much like that of Venus.
To answer the question about Venus’ lack of water, we must return to the early history of the planet. Just as on present-day Earth, the oceans of Venus limited the amount of atmospheric carbon dioxide by dissolving it in the oceans and binding it up in carbonate rocks. But being closer to the Sun than Earth is, enough of the liquid water on Venus would have vaporized to create a thick cover of water vapor clouds. Since water vapor is a greenhouse gas, this humid atmosphere—perhaps denser than Earth’s present-day atmosphere, but far less dense than the atmosphere that envelops Venus today—would have efficiently trapped heat from the Sun. At first, this would have had little effect on the oceans of Venus. Although the temperature would have climbed above 100° C, the boiling point of water at sea level on Earth, the added atmospheric pressure from water vapor would have kept the water in Venus’ oceans in the liquid state.
This hot and humid state of affairs may have persisted for several hundred million years. But as the Sun’s energy output slowly increased over time, the temperature at the surface would eventually have risen above 374°C. Above this temperature, no matter what the atmospheric pressure. Venus’ oceans would have begun to evaporate, and the added water vapor in the atmosphere would have increased the greenhouse effect. This would have made the temperature even higher and caused the oceans to evaporate faster, producing more water vapor. That, in turn, would have further intensified the greenhouse effect and made the temperature climb higher still.
Once Venus’ oceans disappeared, so did the mechanism for removing carbon dioxide from the atmosphere. With no oceans to dissolve it, outgassed carbon dioxide began to accumulate in the atmosphere, intensifying the greenhouse effect even more Temperatures eventually became high enough to" bake out” any carbon dioxide that was trapped in carbonate rocks. This liberated carbon dioxide formed the thick atmosphere of present-day Venus. Over time, the rising temperatures would have leveled off, solar ultraviolet radiation having broken down atmospheric water vapor molecules into hydrogen and oxygen. With all the water vapor gone, the greenhouse effect would no longer have accelerated.
Earth has abundant water in its oceans but very little carbon dioxide in its relatively thin atmosphere. By contrast, Venus is very dry and its thick atmosphere is mostly carbon dioxide. The original atmospheres of both Venus and Earth were derived at least in part from gases spewed forth, or outgassed, by volcanoes. The gases that emanate from present-day volcanoes on Earth, such as Mount Saint Helens, are predominantly water vapor, carbon dioxide, and sulfur dioxide. These gases should therefore have been important parts of the original atmospheres of both Venus and Earth. Much of the water on both planets is also thought to have come from impacts from comets, icy bodies formed in the outer solar system.
In fact, water probably once dominated the Venusian atmosphere. Venus and Earth are similar in size and mass, so Venusian volcanoes may well have outgassed as much water vapor as on Earth, and both planets would have had about the same number of comets strike their surfaces. Studies of how stars evolve suggest that the early Sun was only about 70 percent as luminous as it is now, so the temperature in Venus’ early atmosphere must have been quite a bit lower. Thus water vapor would have been able to liquefy and form oceans on Venus. But if water vapor and carbon dioxide were once so common in the atmospheres of both Earth and Venus, what became of Earth’s carbon dioxide? And what happened to the water on Venus?
The answer to the first question is that carbon dioxide is still found in abundance on Earth, but now, instead of being in the form of atmospheric carbon dioxide, it is either dissolved in the oceans or chemically bound into carbonate rocks, such as the limestone and marble that formed in the oceans. If Earth became as hot as Venus, much of its carbon dioxide would be boiled out of the oceans and baked out of the crust. Our planet would soon develop a thick, oppressive carbon dioxide atmosphere much like that of Venus.
To answer the question about Venus’ lack of water, we must return to the early history of the planet. Just as on present-day Earth, the oceans of Venus limited the amount of atmospheric carbon dioxide by dissolving it in the oceans and binding it up in carbonate rocks. But being closer to the Sun than Earth is, enough of the liquid water on Venus would have vaporized to create a thick cover of water vapor clouds. Since water vapor is a greenhouse gas, this humid atmosphere—perhaps denser than Earth’s present-day atmosphere, but far less dense than the atmosphere that envelops Venus today—would have efficiently trapped heat from the Sun. At first, this would have had little effect on the oceans of Venus. Although the temperature would have climbed above 100° C, the boiling point of water at sea level on Earth, the added atmospheric pressure from water vapor would have kept the water in Venus’ oceans in the liquid state.
Once Venus’ oceans disappeared, so did the mechanism for removing carbon dioxide from the atmosphere. With no oceans to dissolve it, outgassed carbon dioxide began to accumulate in the atmosphere, intensifying the greenhouse effect even more Temperatures eventually became high enough to" bake out” any carbon dioxide that was trapped in carbonate rocks. This liberated carbon dioxide formed the thick atmosphere of present-day Venus. Over time, the rising temperatures would have leveled off, solar ultraviolet radiation having broken down atmospheric water vapor molecules into hydrogen and oxygen. With all the water vapor gone, the greenhouse effect would no longer have accelerated.
This hot and humid state of affairs may have persisted for several hundred million years. But as the Sun’s energy output slowly increased over time, the temperature at the surface would eventually have risen above 374°C. Above this temperature, no matter what the atmospheric pressure. Venus’ oceans would have begun to evaporate, and the added water vapor in the atmosphere would have increased the greenhouse effect. This would have made the temperature even higher and caused the oceans to evaporate faster, producing more water vapor. That, in turn, would have further intensified the greenhouse effect and made the temperature climb higher still.
Once Venus’ oceans disappeared, so did the mechanism for removing carbon dioxide from the atmosphere. With no oceans to dissolve it, outgassed carbon dioxide began to accumulate in the atmosphere, intensifying the greenhouse effect even more Temperatures eventually became high enough to" bake out” any carbon dioxide that was trapped in carbonate rocks. This liberated carbon dioxide formed the thick atmosphere of present-day Venus. Over time, the rising temperatures would have leveled off, solar ultraviolet radiation having broken down atmospheric water vapor molecules into hydrogen and oxygen. With all the water vapor gone, the greenhouse effect would no longer have accelerated.
This cycle of rising temperatures following an increase in greenhouse gases is known as the
runaway greenhouse effect.
This hot and humid state of affairs may have persisted for several hundred million years. But as the Sun’s energy output slowly increased over time, the temperature at the surface would eventually have risen above 374°C.[ 1 ] Above this temperature, no matter what the atmospheric pressure. Venus’ oceans would have begun to evaporate, and the added water vapor in the atmosphere would have increased the greenhouse effect.[ 2 ] This would have made the temperature even higher and caused the oceans to evaporate faster, producing more water vapor. [ 3 ] That, in turn, would have further intensified the greenhouse effect and made the temperature climb higher still.[ 4 ]
Early Venus
Present day Venus
Answer Choices
In contrast to mammals and birds, amphibians are unable to produce thermal energy through their metabolic activity, which would allow them to regulate their body temperature independent of the surrounding or ambient temperature. However, the idea that amphibians have no control whatsoever over their body temperature has been proven false because their body temperature does not always correspond to the surrounding temperature. While amphibians are poor thermoregulators, they do exercise control over their body temperature to a limited degree.
Physiological adaptations can assist amphibians in colonizing habitats where extreme conditions prevail. The tolerance range in body temperature represents the range of temperatures within which a species can survive. One species of North American newt is still active when temperatures drop to -2°C while one South American frog feels comfortable even when temperatures rise to 41°C—the highest body temperature measured in a free-ranging amphibian. Recently it has been shown that some North American frog and toad species can survive up to five days with a body temperature of -6°C with approximately one-third of their body fluids frozen. The other tissues are protected because they contain the frost-protective agents glycerin or glucose Additionally, in many species the tolerance boundaries are flexible and can change as a result of acclimatization (long-term exposure to particular conditions).
Frog species that remain exposed to the sun despite high diurnal (daytime) temperatures exhibit some fascinating modifications in the skin structure that function as morphological adaptations. Most amphibian skin is fully water permeable and is therefore not a barrier against evaporation or solar radiation. The African savanna frog Hyperolius viridiflavus stores guanine crystals in its skin, which enable it to better reflect solar radiation, thus providing protection against overheating. The tree frog Phyllomedusa sauvagei responds to evaporative losses with gland secretions that provide a greasy film over its entire body that helps prevent desiccation (dehydration).
However, behavior is by far the most important factor in thermoregulation. The principal elements in behavioral thermoregulation are basking (heliothermy), heat exchange with substrates such as rock or earth (thigmothermy), and diurnal and annual avoidance behaviors, which include moving to shelter during the day for cooling and hibernating or estivating (reducing activity during cold or hot weather, respectively) Heliothermy is especially common among frogs and toads: it allows them to increase their body temperature by more than 10°C. The Andean toad Bufo spinulosus exposes itself immediately after sunrise on moist ground and attains its preferred body temperature by this means, long before either ground or air is correspondingly warmed. A positive side effect of this approach is that it accelerates the digestion of the prey consumed overnight, thus also accelerating growth. Thigmothermy is a behavior present in most amphibians, although pressing against the ground serves a dual purpose: heat absorption by conductivity and water absorption through the skin. The effect of thigmothermy is especially evident in the Andean toad during rainfall: its body temperature corresponds to the temperature of the warm earth and not to the much cooler air temperature.
Avoidance behavior occurs whenever physiological and morphological adaptations are insufficient to maintain body temperature within the vital range. Nocturnal activity in amphibians with low tolerance for high ambient temperatures is a typical thermoregulatory behavior of avoidance. Seasonal avoidance behavior is extremely important in many amphibians. Species whose habitat lies in the temperate latitudes are confronted by lethal low temperatures in winter, while species dwelling in semi- and regions are exposed to long dry, hot periods in summer.
In amphibians hibernation occurs in mud or deep holes away from frost. North of the Pyrenees Mountains, the natterjack toad offers a good example of hibernation, passing the winter dug deep into sandy ground. Conversely, natterjacks in southern Spain remain active during the mild winters common to the region and are instead forced into inactivity during the dry, hot summer season. Summer estivation also occurs by burrowing into the ground or hiding in cool, deep rock crevasses to avoid desiccation and lethal ambient temperature. Amphibians are therefore hardly at mercy of ambient temperature, since by means of the mechanisms described above they are more than )exercise some control over their body temperature.
In contrast to mammals and birds, amphibians are unable to produce thermal energy through their metabolic activity, which would allow them to regulate their body temperature independent of the surrounding or ambient temperature. However, the idea that amphibians have no control whatsoever over their body temperature has been proven false because their body temperature does not always correspond to the surrounding temperature While amphibians are poor thermoregulators, they do exercise control over their body temperature to a limited degree.
Physiological adaptations can assist amphibians in colonizing habitats where extreme conditions prevail. The tolerance range in body temperature represents the range of temperatures within which a species can survive. One species of North American newt is still active when temperatures drop to -2°C while one South American frog feels comfortable even when temperatures rise to 41°C—the highest body temperature measured in a free-ranging amphibian Recently it has been shown that some North American frog and toad species can survive up to five days with a body temperature of -6°C with approximately one-third of their body fluids frozen. The other tissues are protected because they contain the frost-protective agents glycerin or glucose Additionally, in many species the tolerance boundaries are flexible and can change as a result of acclimatization (long-term exposure to particular conditions)
Frog species that remain exposed to the sun despite high diurnal (daytime) temperatures exhibit some fascinating modifications in the skin structure that function as morphological adaptations. Most amphibian skin is fully water permeable and is therefore not a barrier against evaporation or solar radiation. The African savanna frog Hyperolius viridiflavus stores guanine crystals in its skin, which enable it to better reflect solar radiation, thus providing protection against overheating The tree frog Phyllomedusa sauvagei responds to evaporative losses with gland secretions that provide a greasy film over its entire body that helps prevent desiccation (dehydration).
However, behavior is by far the most important factor in thermoregulation. The principal elements in behavioral thermoregulation are basking (heliothermy), heat exchange with substrates such as rock or earth (thigmothermy), and diurnal and annual avoidance behaviors, which include moving to shelter during the day for cooling and hibernating or estivating (reducing activity during cold or hot weather, respectively) Heliothermy is especially common among frogs and toads: it allows them to increase their body temperature by more than 10°C. The Andean toad Bufo spinulosus exposes itself immediately after sunrise on moist ground and attains its preferred body temperature by this means, long before either ground or air is correspondingly warmed. A positive side effect of this approach is that it accelerates the digestion of the prey consumed overnight, thus also accelerating growth Thigmothermy is a behavior present in most amphibians, although pressing against the ground serves a dual purpose heat absorption by conductivity and water absorption through the skin The effect of thigmothermy is especially evident in the Andean toad during rainfall its body temperature corresponds to the temperature of the warm earth and not to the much cooler air temperature.
Avoidance behavior occurs whenever physiological and morphological adaptations are insufficient to maintain body temperature within the vital range Nocturnal activity in amphibians with low tolerance for high ambient temperatures is a typical thermoregulatory behavior of avoidance. Seasonal avoidance behavior is extremely important in many amphibians. Species whose habitat lies in the temperate latitudes are confronted by lethal low temperatures in winter, while species dwelling in semi- and regions are exposed to long dry, hot periods in summer.
In amphibians hibernation occurs in mud or deep holes away from frost North of the Pyrenees Mountains, the natterjack toad offers a good example of hibernation, passing the winter dug deep into sandy ground. Conversely, natterjacks in southern Spain remain active during the mild winters common to the region and are instead forced into inactivity during the dry, hot summer season. Summer estivation also occurs by burrowing into the ground or hiding in cool, deep rock crevasses to avoid desiccation and lethal ambient temperature. Amphibians are therefore hardly at mercy of ambient temperature, since by means of the mechanisms described above they are more than exercise some control over their body temperature.
On the other hand, amphibians in very hot climates use secretions from the mucus glands to decrease their temperature through evaporative cooling on the skin.
Physiological adaptations can assist amphibians in colonizing habitats where extreme conditions prevail. The tolerance range in body temperature represents the range of temperatures within which a species can survive. One species of North American newt is still active when temperatures drop to 2°C while one South American frog feels comfortable even when temperatures measured to 41°C the highest body temperature measu red in a free ranging amphibian. [ 1 ] Recently it has been shown that some North American frog and toad species can survive up to five days with a body temperature of 6°C with approximately one third of their body fluids frozen. [ 2 ] The other tissues are protected because they contain the frost protective agents glycerin or glucose. [ 3 ] Additionally, in many species the tolerance boundaries are flexible and can change as a result of acclimatization (long-term exposure to particular conditions). conditions).[ 4 ]
A number of factors may help account for the difference in biodiversity between low and high latitudes.
Answer Choices
Bartering was a basic trade mechanism for many thousands of years; often sporadic and usually based on notions of reciprocity, it involved the mutual exchange of commodities or objects between individuals or groups. Redistribution of these goods through society lay in the hands of chiefs, religious leaders, or kin groups. Such redistribution was a basic element in chiefdoms. The change from redistribution to formal trade—often based on regulated commerce that perhaps involved fixed prices and even currency—was closely tied to growing political and social complexity and hence to the development of the state in the ancient world.
In the 1970s, a number of archaeologists gave trade a primary role in the rise of ancient states. British archaeologist Colin Renfrew attributed the dramatic flowering of the Minoan civilization on Crete and through the Aegean to intensified trading contacts and to the impact of olive and vine cultivation on local communities. As agricultural economies became more diversified and local food supplies could be purchased both locally and over longer distances, a far-reaching economic interdependence resulted. Eventually, this led to redistribution systems for luxuries and basic commodities, systems that were organized and controlled by Minoan rulers from their palaces. As time went on, the self-sufficiency of communities was replaced by mutual dependence. Interest in long-distance trade brought about some cultural homogeneity from trade and gift exchange, and perhaps even led to piracy. Thus, intensified trade and interaction, and the flowering of specialist crafts, in a complex process of positive feedback, led to much more complex societies based on palaces, which were the economic hubs of a new Minoan civilization.
Renfrew’s model made some assumptions that are now discounted. For example, he argued that the introduction of domesticated vines and olives allowed a substantial expansion of land under cultivation and helped to power the emergence of complex society. Many archaeologists and paleobotanists now question this view, pointing out that the available evidence for cultivated vines and olives suggests that they were present only in the later Bronze Age. Trade, nevertheless, was probably one of many variables that led to the emergence of palace economies in Minoan Crete.
American archaeologist William Rathje developed a hypothesis that considered an explosion in long-distance exchange a fundamental cause of Mayan civilization in Mesoamerica. He suggested that the lowland Mayan environment was deficient in many vital resources, among them obsidian, salt, stone for grinding maize, and many luxury materials. All these could be obtained from the nearby highlands, from the Valley of Mexico, and from other regions, if the necessary trading networks came into being. Such connections, and the trading expeditions to maintain them, could not be organized by individual villages. The Maya lived in a relatively uniform environment, where every community suffered from the same resource deficiencies. Thus, argued Rathje, long- -distance trade networks were organized through local ceremonial centers and their leaders. In time, this organization became a state, and knowledge of its functioning was exportable, as were pottery, tropical bird feathers, specialized stone materials, and other local commodities.
Rathje’s hypothesis probably explains part of the complex process of Mayan state formation, but it suffers from the objection that suitable alternative raw materials can be found in the lowlands. It could be, too, that warfare became a competitive response to population growth and to the increasing scarcity of prime agricultural land, and that it played an important role in the emergence of the Mayan states.
Now that we know much more about ancient exchange and commerce, we know that, because no one aspect of trade was an overriding cause of cultural change or evolution in commercial practices, trade can never be looked on as a unifying factor or as a primary agent of ancient civilization. Many ever-changing variables affected ancient trade, among them the demand for goods. There were also the logistics of transportation, the extent of the trading network, and the social and political environment. Intricate market networks channeled supplies along well-defined routes. Authorities at both ends might regulate the profits fed back to the source, providing the incentive for further transactions. There may or may not have been a market organization. Extensive long-distance trade was a consequence rather than a cause of complex societies.
Bartering was a basic trade mechanism for many thousands of years; often sporadic and usually based on notions of reciprocity, it involved the mutual exchange of commodities or objects between individuals or groups. Redistribution of these goods through society lay in the hands of chiefs, religious leaders, or kin groups. Such redistribution was a basic element in chiefdoms. The change from redistribution to formal trade—often based on regulated commerce that perhaps involved fixed prices and even currency—was closely tied to growing political and social complexity and hence to the development of the state in the ancient world.
In the 1970s, a number of archaeologists gave trade a primary role in the rise of ancient states. British archaeologist Colin Renfrew attributed the dramatic flowering of the Minoan civilization on Crete and through the Aegean to intensified trading contacts and to the impact of olive and vine cultivation on local communities. As agricultural economies became more diversified and local food supplies could be purchased both locally and over longer distances, a far-reaching economic interdependence resulted. Eventually, this led to redistribution systems for luxuries and basic commodities, systems that were organized and controlled by Minoan rulers from their palaces. As time went on, the self-sufficiency of communities was replaced by mutual dependence. Interest in long-distance trade brought about some cultural homogeneity from trade and gift exchange, and perhaps even led to piracy. Thus, intensified trade and interaction, and the flowering of specialist crafts, in a complex process of positive feedback, led to much more complex societies based on palaces, which were the economic hubs of a new Minoan civilization.
Renfrew’s model made some assumptions that are now discounted. For example, he argued that the introduction of domesticated vines and olives allowed a substantial expansion of land under cultivation and helped to power the emergence of complex society. Many archaeologists and paleobotanists now question this view, pointing out that the available evidence for cultivated vines and olives suggests that they were present only in the later Bronze Age. Trade, nevertheless, was probably one of many variables that led to the emergence of palace economies in Minoan Crete.
American archaeologist William Rathje developed a hypothesis that considered an explosion in long-distance exchange a fundamental cause of Mayan civilization in Mesoamerica. He suggested that the lowland Mayan environment was deficient in many vital resources, among them obsidian, salt, stone for grinding maize, and many luxury materials. All these could be obtained from the nearby highlands, from the Valley of Mexico, and from other regions, if the necessary trading networks came into being. Such connections, and the trading expeditions to maintain them, could not be organized by individual villages. The Maya lived in a relatively uniform environment, where every community suffered from the same resource deficiencies. Thus, argued Rathje, long- -distance trade networks were organized through local ceremonial centers and their leaders. In time, this organization became a state, and knowledge of its functioning was exportable, as were pottery, tropical bird feathers, specialized stone materials, and other local commodities.
Rathje’s hypothesis probably explains part of the complex process of Mayan state formation, but it suffers from the objection that suitable alternative raw materials can be found in the lowlands. It could be, too, that warfare became a competitive response to population growth and to the increasing scarcity of prime agricultural land, and that it played an important role in the emergence of the Mayan states.
American archaeologist William Rathje developed a hypothesis that considered an explosion in long-distance exchange a fundamental cause of Mayan civilization in Mesoamerica. He suggested that the lowland Mayan environment was deficient in many vital resources, among them obsidian, salt, stone for grinding maize, and many luxury materials. All these could be obtained from the nearby highlands, from the Valley of Mexico, and from other regions, if the necessary trading networks came into being. Such connections, and the trading expeditions to maintain them, could not be organized by individual villages. The Maya lived in a relatively uniform environment, where every community suffered from the same resource deficiencies. Thus, argued Rathje, long- -distance trade networks were organized through local ceremonial centers and their leaders. In time, this organization became a state, and knowledge of its functioning was exportable, as were pottery, tropical bird feathers, specialized stone materials, and other local commodities.
Now that we know much more about ancient exchange and commerce, we know that, because no one aspect of trade was an overriding cause of cultural change or evolution in commercial practices, trade can never be looked on as a unifying factor or as a primary agent of ancient civilization. Many ever-changing variables affected ancient trade, among them the demand for goods. There were also the logistics of transportation, the extent of the trading network, and the social and political environment. Intricate market networks channeled supplies along well-defined routes. Authorities at both ends might regulate the profits fed back to the source, providing the incentive for further transactions. There may or may not have been a market organization. Extensive long-distance trade was a consequence rather than a cause of complex societies.
But demand for locally unobtainable resources was clearly only a part of the story.
Now that we know much more about ancient exchange and commerce, we know that, because no one aspect of trade was an overriding cause of cultural change or evolution in commercial practices, trade can never be looked on as a unifying factor or as a primary agent of ancient civilization.[ 1 ] Many ever-changing variables affected ancient trade, among them the demand for goods.[ 2 ] There were also the logistics of transportation, the extent of the trading network, and the social and political environment.[ 3 ] Intricate market networks channeled supplies along well-defined routes.[ 4 ] Authorities at both ends might regulate the profits fed back to the source, providing the incentive for further transactions. There may or may not have been a market organization. Extensive long-distance trade was a consequence rather than a cause of complex societies.
Various attempts have been made to explore the role that trade played in the rise of ancient states.
Answer Choices
Listening Part
Click on 2 answers.
Click on 2 answers.
Click on 2 answers.